
International Journal of Solids and Structures 41 (2004) 4551–4565

www.elsevier.com/locate/ijsolstr
Elastic solutions for periodically layered strip with
perfect bonding or with an interface crack

Leonid Kucherov, Michael Ryvkin *

Department of Solid Mechanics, Materials and Systems, The Iby and Aladar Fleischman Faculty of Engineering,

Tel Aviv University, 69978 Ramat Aviv, Israel

Received 14 September 2003; received in revised form 16 February 2004

Available online 9 April 2004

Abstract

A non-homogenization approach to the analysis of a strip consisting of a finite number of isotropic elastic layers

arranged periodically is presented. The result is obtained by the use of the representative cell method based on the

discrete Fourier transform. Two types of problems are addressed. In the problems of the first type the bonding between

the layers is perfect. The solution for this case is found in a closed form in terms of the Laplace integrals. The numerical

results for different boundary conditions are given and a comparison with plate theory is carried out. In the problems of

the second type there is a flaw (crack) at one of the interfaces. The solution in this case hinges on the analytic expression

for the Green function corresponding to a single interface dislocation in the uncracked strip. By using this expression the

crack problem is reduced to a singular integral equation. The influence of the elastic mismatch and other problem

parameters on the fracture characteristics is examined. It is found that, similar to the case of the periodic plane, when the

thinner layeres in the strip are stiffer, further increase of their stiffness may lead to the increase or to the decrease of the

absolute value of the stress intensity factor depending upon the elastic mismatch between the composite constituents.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Multilayered composite materials are widely used in modern engineering practice. Applications can be

found in electronics, optics, aircraft and machining tool industries, and shipbuilding. The evaluation of

the stress state in multilayers is a complicated task because of the stress discontinuity taking place at the

multiple interfaces. Employing powerful numerical methods becomes less efficient with increase of the

number of layers. Significant elastic and geometric mismatch between the composite constituents observed

in many multilayers poses additional numerical problems. Consequently, some assumptions regarding

through-thickness displacements distribution are usually made in the framework of the approximate plate
theories. Another approach diminishing the computational cost is based on the hierarchy methods (e.g.
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Babushka et al., 1992). A rather complete review of the state of art in the field of computational analysis of

multilayered structures is given by Carrera and Demasi (2002).

Clearly, there is a need for verifying the approximate approaches by exact elasticity solutions. Such

solutions for the simple supported 2D and 3D multilayers composed of anisotropic materials were obtained
by Pagano (1969, 1970). The limitation of these solutions is that they are inconvenient to employ for the

case of a large number of layers. A first goal of the present paper is to obtain the closed form exact solution

free of the above limitation. For the specific case of periodically layered composites this can be done by

means of the discrete Fourier transform based approach suggested by Nuller (1981). A similar method in

the context of periodic structures was developed by Karpov et al. (2002).

The knowledge of the stress distribution in perfectly bonded multilayers provides the ground for the

fracture analysis. One of the most commonly encountered fracture modes is the interface delamination. In

most studies of this phenomenon either composites with a limited number of layers are considered (e.g.
Chatterjee, 1987; Schoeppner and Pagano, 1998; Bruno and Greco, 2001) or some homogenization pro-

cedure is exploited (Sheinman and Kardomates, 1997). Several works are dedicated to periodically layered

composites. Charalambides (1991) used laminate theory in the analysis of a cross-ply laminated beam.

Kaczy�nski et al. (1994) solved the problem on an interface crack in a periodically layered strip by a non-
standard homogenization technique. However, we will show that the discrete Fourier transform based

general approach works as well in the presence of the interface crack, and it is possible to obtain the

solution without simplifying assumptions. The second goal of the present study is to obtain such a solution.

As in the case of an interface crack in a periodically layered bi-material plane including an infinite number
of layers (Kucherov and Ryvkin, 2002) the initial problem is reduced to a singular integral equation.

In the next section the exact elastic solution for the perfectly bonded periodically layered bi-material

infinite strip is derived. The solution is expressed in quadratures. It is implemented for two different types of

boundary conditions at the strip edges. The numerical results are presented, and a parametric study is

performed. In Section 3 a strip containing an interface delamination crack is considered. In accordance with

the dislocation method (Erdogan and Gupta, 1971a,b) the crack is viewed as a superposition of point dis-

locations. The Green function for a single dislocation is determined in a closed form by the technique

developed in Section 2. This enabled to formulate a singular integral equation from which the stress intensity
factor and the energy release rate were determined. The results are verified by comparison with known

solutions from the literature for the limiting cases. The final section presents the concluding remarks.
2. Periodically layered bimaterial strip with perfect bonding

2.1. Closed form solution

Consider an infinite composite bimaterial strip X of thickness H . The strip consists of perfectly bonded
isotropic elastic layers of two different types arranged periodically (Fig. 1a). The thickness, shear modulus

and Poisson ratio of the layers of rth type are denoted as hr; lr and mr, respectively ðr ¼ 1; 2Þ. A method of
deriving the stress state in such strip under arbitrary boundary conditions on its edges has been suggested

by Nuller (1981). This method which is implemented below, hinges on the representative cell approach

(Nuller and Ryvkin, 1980; Ryvkin and Nuller, 1997) and enables to obtain a closed form analytical solution

of the problem. Suppose, for definiteness, that the total number of layers is even, then the strip may be

viewed as an assemblage of bonded identical cells Xk; k ¼ 0; . . . ;N � 1 of thickness h ¼ h1 þ h2 (the case of
a strip with an odd number of layers can be also addressed without difficulty). The typical cell Xk consisting

of two dissimilar layers is depicted in Fig. 1b. In accordance with the representative cell approach, systems

of local coordinates x,y are introduced in all cells in an identical manner as shown in the figure. It is
convenient to introduce a vector related to the stress–strain state in the rth layer of the kth cell as follows



(a)

(b)

Fig. 1. Periodically layered bi-material strip (a) and its repetitive cell (b).
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U ðkÞ
r ðx; yÞ ¼ fukr ; vkr ; rk

r ; s
k
rg; ð1Þ
where ukr � ukr ðx; yÞ and vkr � vkrðx; yÞ are the displacements in the x- and y-directions, respectively, and
rk
r � rk

r ðx; yÞ and skr � skr ðx; yÞ are the normal and shear stresses acting at the planes parallel to the inter-
faces. Then the boundary value problem for the strip in the case of the prescribed tractions at its edges is

defined by the following system of equations (the adopted cells numbering is upwards from the bottom)
Lr½ukr ðx; yÞ; vkr ðx; yÞ
 ¼ 0; k ¼ 0; . . . ;N � 1 r ¼ 1; 2; ð2Þ

Uk
2ðx; 0Þ �Uk

1ðx; 0Þ ¼ 0; k ¼ 0; . . . ;N � 1; ð3Þ

Uk
1ðx;�h1Þ �Uk�1

2 ðx; h2Þ ¼ 0; k ¼ 1; . . . ;N � 1; ð4Þ

rN�1
2 ðx; h2Þ ¼ ruðxÞ; ð5Þ

sN�1
2 ðx; h2Þ ¼ suðxÞ; ð6Þ

r01ðx;�h1Þ ¼ rbðxÞ; ð7Þ

s01ðx;�h1Þ ¼ sbðxÞ: ð8Þ

Here operator Lr in Eqs. (2) corresponds to the Lam�e field equations, and the next group of equations

define the bonding conditions at the interfaces within the cells (3) and between the neighboring cells (4).

Eqs. (5)–(8) express the stress boundary conditions at the upper and bottom edges of the strip, where the

given tractions are denoted by the superscripts ðuÞ and ðbÞ, respectively.
The considered domain in spite of its periodic structure does not possess the translational symmetry in

the direction perpendicular to the interfaces. Consequently, the representative cell technique based on the

discrete Fourier transform can not be applied directly. To overcome this obstacle we complete the strip to a

plane by adding infnite number of cells Xk, k ¼ . . . ;�2;�1;N ;N þ 1; . . . and suppose that the stress state in
the plane possesses the periodicity property with period equal to hP , where P is some integer grater than N .
In terms of local coordinates this property is expressed as following
UkþnP
r ðx; yÞ ¼ Uk

rðx; yÞ; r ¼ 1; 2; k ¼ 1; . . . ; P � 1; n ¼ 0;�1;�2 . . . ; ð9Þ

i.e. the plane consists of P -strips with identical stress state.



Fig. 2. Transition from the problem for a strip to the problem for a plane.
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Each P -strip, in turn, may be viewed as composed of the initial N -strip and P � N additional cells (Fig.
2). The above condition, clearly, will take place only if the loading applied to the plane is P -periodic. In
order to keep the equivalence to the initial problem we assume that this loading is applied in the region

occupied by P � N additional cells. It is convenient to apply the loading at the interfaces corresponding to
the bottom and the upper edges of the initial strip (Fig. 2). Consequently, the equilibrium conditions at

these interfaces take the form
rnP
1 ðx;�h1Þ � rnP�1

2 ðx; h2Þ ¼ D1ðxÞ;

snP1 ðx;�h1Þ � snP�12 ðx; h2Þ ¼ D3ðxÞ;

rNþnP
1 ðx;�h1Þ � rN�1þnP

2 ðx; h2Þ ¼ D2ðxÞ;

sNþnP
1 ðx;�h1Þ � sN�1þnP

2 ðx; h2Þ ¼ D4ðxÞ; n ¼ 0;�1;�2 . . . :

ð10Þ
The unknown stress jumps Di are to be adjusted in order to provide the fulfillment of conditions (5)–(8)

at the boundaries of the N - strip. Their derivation is carried out by taking advantage of the cyclic symmetry
of the stress state in the plane. A similar technique for replacing the problem for an arbitrary loaded finite

periodic structure by the equivalent cyclic one was employed recently by Karpov et al. (2002). Note that

there is some freedom in choosing the location of the jumps as well as their origin. For example, jumps in

the displacements can be considered. The interested reader can find more information on this subject in the

paper by Nuller (1981).

Let us cut out from the plane one cycle, a P -strip comprised of the cells Xk, k ¼ 0; 1; . . . ; P � 1. The
boundary problem for this strip is defined by the field equations (2), the conditions at the inner interfaces

(3) and the conditions between the cells
U k
1ðx;�h1Þ �Uk�1

2 ðx; h2Þ ¼ D0ðxÞdk0 þDNðxÞdkN ð11Þ

completed by the periodicity condition following from (9)
UP
2 ðx;�h1Þ ¼ U0

r ðx;�h1Þ: ð12Þ

Here the vectors DdðxÞ ¼ f0; 0;D1ðxÞ;D3ðxÞg and DuðxÞ ¼ f0; 0;D2ðxÞ;D4ðxÞg are composed from the

introduced stress jumps and dij is the Kronecker delta.

Application of the finite discrete Fourier transform
g�r ðx; y;/mÞ ¼
XP�1
k¼0

gk
r ðx; yÞe�ik/m ; um ¼ 2pm=P ; m ¼ 0; 1; 2; . . . ; P � 1 ð13Þ
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reduces the problem for the P -strip to the boundary problem for the representative cell X� (�h1 < y < h2,
�1 < x < 1)
Lr½u�r ðx; y;umÞ; v�r ðx; y;umÞ
 ¼ 0; ðx; yÞ 2 X�; ð14Þ

U�
2ðx; 0;umÞ �U�

1ðx; 0;umÞ ¼ 0; ð15Þ

U�
1ðx;�h1;umÞ � cmU

�
2ðx; h2;umÞ ¼ DdðxÞ þDuðxÞcNm ; ð16Þ
where cm ¼ e�ium .

Note that conditions (16) relating the opposite sides of the representative cell are sometimes referred as

Born–Von Karman type boundary conditions.
The solution of the problem for the representative cell is straightforward. The Papkovich-Neuber rep-

resentation of the displacements transforms in the form of Laplace integrals
u�r ðx; y;umÞ ¼
1

2p

Z
L
½yzðA4r�1 cos zy þ A4r sin zyÞ þ A4r�3 cos zy þ A4r�2 sin zy
ezx dz;

v�r ðx; y;umÞ ¼
1

2p

Z
L
½ðA4r�2 � ð3� 4mrÞA4r�1 þ yzA4rÞ cos zy � ðyzA4r�1 þ jrA4r þ A4r�3Þ sin zy
ezx dz;

jr ¼ 3� 4mr; r ¼ 1; 2
ð17Þ
provides the fulfillment of field equations (14). Here Aj � AjðzÞ, j ¼ 1; 2; . . . ; 8 are the functions of complex
variable z, and contour L is a line Re z ¼ e in the z-plane. The exact location of the contour L in the vicinity
of the imaginary axis must be chosen in accordance with the boundary conditions in order to provide the

required behavior of the solution for x ! 1.
Substitution of (17) into the boundary conditions (15) and (16) yields after some manipulation the

system of 8 linear algebraic equations with respect to unknown functions Aj
MA ¼ R: ð18Þ

Here A ¼ fAjg, R ¼ f0; 0; �D1ðzÞ þ cNm �D2ðzÞ; �D3ðzÞ þ cNm �D4ðzÞ; 0; 0; 0; 0; 0g, and the square matrix M ¼

fmijg is presented in Appendix A. The upper bar denotes hereafter the Laplace transforms of the corres-
ponding functions.

Having defined functions Aj in terms of the unknown jumps one can determine the components of the

stress–strain state in any cell Xk, k ¼ 0; 1; 2; . . . ; P � 1 of the P -strip by the inverse discrete Fourier trans-
form
gk
r ðx; yÞ ¼

1

P

XP�1
m¼0

g�r ðx; y;/mÞeikum : ð19Þ
The jumps are determined from conditions (5)–(8) which provide the equivalence of the P -strip and N -
strip problems within domain X. The 4th order linear algebraic system for deriving the Laplace transforms
of the jumps has the form
1

P

XP�1
m¼0

s11 cNms11 s13 cNms13
s21 cNms21 s23 cNms23

c�N
m s11 s11 � 1 c�N

m s13 s13
c�N
m s21 s21 c�N

m s23 s23 � 1

2
6664

3
7775

0
BBB@

1
CCCA

�D1ðzÞ
�D2ðzÞ
�D3ðzÞ
�D4ðzÞ

2
6664

3
7775 ¼

�rdðzÞ
�sdðzÞ
�ruðzÞ
�suðzÞ

2
66664

3
77775; ð20Þ
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where the expressions for the elements sij are given in Appendix B. These expressions depend upon discrete
Fourier transform parameter m, and the summation is understood as being applied to any element of the
matrix. Having derived the jumps transforms from the latter system one obtains in view of (17)–(19) the

closed form solution of the initial problem (2)–(8) on the periodically layered bi-matetrial strip X.
Exchanging the order of the summation and the integration gives the answer in the form of Laplace

integrals of rather cumbersome expressions which can be, nevertheless, successfully handled using symbolic

computation. It should be noted that when the external loading at the strip edges is localized and the

stresses at infinity vanish the Laplace transforms of the stresses do not possess singularities on the imag-

inary axis and contour L can be shifted to the line Re z ¼ 0, which facilitates the calculation procedure.
Note, that the number P � N of additional cells in the P -strip can be chosen arbitrarily and, of course,

does not influence the final result. It was found that it is most convenient to take the thickness of the P -strip
about 5% larger than that of the N -strip. Another point that should be emphasized is that with increasing
number of bilayers N and, consequently, of P , defining the number of terms in (19), the numerical efficiency
of the method decreases. This phenomenon can be cancelled out by setting P ! 1 and replacing the finite

discrete Fourier transform by the discrete Fourier transform. The interested reader can find the detailed

description of this procedure in Kamysheva et al. (1982).
2.2. Numerical examples

Let us first compare the obtained exact solution with the approximate theory of composite plates by

means of the three point bending specimen (see insert in Fig. 3b). An infinite strip consisting of twenty bi-
layers ðN ¼ H=h ¼ 20Þ is subjected to a normal point force Q applied between the simple supports in a non-
symmetric manner l1=H ¼ 1, l2=H ¼ 4. The thinner layers are assumed to be the more compliant ones
h1=h ¼ 0:2, l ¼ l2=l1 ¼ 20 and the Poisson ratios of the materials are taken as m1 ¼ 0:3 and m2 ¼ 0:35.
The external tractions in boundary conditions at the strip edges (5)–(8) are found to be
ruðxÞ ¼ �Qdðx� l1Þ; ð21Þ
rbðxÞ ¼ �Q
l2
l

dðxÞ
�

þ l1
l

dðx� lÞ
�
; ð22Þ
suðxÞ ¼ sbðxÞ ¼ 0; ð23Þ
where dðxÞ is the delta function and l ¼ l1 þ l2 is the distance between the supports.
The numerical results for the stress distribution are presented in the global Cartesian coordinate system

ðX ; Y Þ. In Fig. 3a and b the normalized bending stresses rxxðX0; Y Þ composed from the corresponding values
rk
rxx
ðx; yÞ are shown.
Two cross-sections X0=H ¼ 3 and X0=H ¼ 1 are considered. Both graphs are discontinuous at the

interfaces between the layers because of the jumps in the elastic properties. For the cross-section away from

the point forces (Fig. 3a) the stresses within each layer exhibit linear behavior and parts of the graph

corresponding to the stiff and the compliant layers are located along the two different straight lines. Such a

behavior points to a linear bending strain distribution in the N -strip which is in agreement with the plane
cross-sections hypothesis adopted in the plate theory of composites. In fact, the stresses calculated by the

use of this theory (dotted line) are found to be very close to the exact values.

On the other hand, in the cross-section where the point force is applied the plate theory, as expected,

does not give satisfactory results (Fig. 3b). The stress distribution within each of the layers is found to be
linear as in the previous case. This may be explained by a relatively large difference in the elastic moduli of

the materials, when the thick stiff layers behave like beams and the thin compliant ones like linear springs.



(a)

(c)

(b)

2

1

Fig. 3. Bending stress in the three point bending problem in the cross-section away from the point forces (a), in the cross-section

including the applied force (b) and within the stiffer layer along the interface closest to the bottom edge (c).
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At the same time, the angles defining the linear distribution within the layers of the specific type are different

and the bending strain is a non-linear function of through-thickness coordinate Y .
Another comparison of the obtained solution with the plate theory is presented in Fig. 3c where the

distribution of the bending stress rxxðX ;H � h1 � 0Þ along the first interface from the bottom is depicted.
The results are presented for different materials mismatch. It is seen that for the considered geometry the

difference between the plate theory and the exact solution becomes significant only for large elastic moduli
ratio and decreases rapidly with the distance from the cross-section where the point force is applied.

In the next example the contact stresses at the interface between the multilayered strip and the rigid

substrate are examined (see insert in Fig. 4a). The loading is a tangential shear force applied at the upper

edge. The bonding between the strip and the substrate is perfect and the stress boundary conditions (7) and

(8) are to be replaced by the clamping conditions
u01ðx;�h1Þ ¼ v01ðx;�h1Þ ¼ 0: ð24Þ
The change in the type of boundary conditions does not preclude employing, as previously, the stress

jumps Dj as the adjusting factor. The matrix equation (18) remains unaltered. When correcting the first two

equations of (20) in accordance with (24) one obtains the closed form solution in this case also.

The calculations were carried out for the strip consisting of eight bi-layers. The materials of the com-
posite constituents have dissimilar shear moduli l ¼ l2=l1 ¼ 9 and equal Poisson ratios m1 ¼ m2 ¼ 1=3. The



Fig. 4. (a) Normal contact stresses at the interface between the strip and rigid substrate. (b) Dependence of the maximal normal contact

stress upon the volume fraction of the first material.
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numerical results for the normal contact stresses at the strip bottom Y ¼ H for different thickness ratios

h1=h are presented in Fig. 4a. The stresses are screw symmetric and are shown for X > 0. It is worthwhile to
compare the obtained results with the solution of the corresponding problem on a homogeneous strip. The
stresses in the analytical solution of the latter problem, which is easily derived by the standard Laplace

transformation technique (see, for example, Uflyand, 1968), are found to be independent of the material

shear modulus. Consequently, the stress distribution for both limiting cases h1=h ! 0 and h1=h ! 1 in the

considered problem on the multilayered strip must be the same. This trend is clearly observed in the figure

where the analytical result for the homogeneous strip is denoted by a dotted line. Note, that in the case of

materials with dissimilar Poisson ratios one would get two different limiting curves.

The stress distribution is characterized by a single maximum depending upon the volume fraction h1=h.
The results reveal an interesting phenomenon: for sufficiently thin layers of one type this maximum always
decreases with the increasing of their thickness independently of the fact whether these layers are the stiffer

or the more compliant ones. Consequently, the contact stresses at the bottom of the layered strip will, as a

rule, be less than those for the strip made of the thick layers bulk material. Clearly, there is some optimum

value of ratio h1=hminimizing the maximum of the contact stresses. For the considered materials it is found
to be about 0:6 as illustrated in Fig. 4b where the dependence of the maximum normal stress upon the
thickness ratio is presented.

The calculations show that a similar phenomenon takes place in the conjugate problem when the shear

stresses at the clamped bottom of the strip generated by a normal force applied at the upper edge are
examined. Namely, there is some optimal thickness ratio minimizing the contact shear stresses.
3. Delamination crack

3.1. Singular integral equation

The extension of the employed method to the case when the bonding of the layers is not perfect and there

is a crack at one of the interfaces is not a particulary diffficult problem. The change in the type of the

boundary conditions at the cracked interface can be eliminated by using the dislocation approach suggested
by Erdogan and Gupta (1971a,b). Recently this approach was successfully employed in combination with
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the representative cell method for the problems about cracks in periodically layered composites (see refe-

rences in Kucherov and Ryvkin (2002)).

Consider the case when a crack of length 2a is loaded by uniform opening tractions r0 and located at the
inner interface in cell number n
Fig. 5.

the thi
rn
1ðx; 0Þ ¼ rn

2ðx; 0Þ ¼ �r0; ð25Þ

sn1ðx; 0Þ ¼ sn2ðx; 0Þ ¼ 0; �a < x < a: ð26Þ

The upper edge of the strip is traction-free
rN�1
2 ðx; h2Þ ¼ sN�1

2 ðx; h2Þ ¼ 0; ð27Þ

and the lower one is clamped, i.e. condition (24) takes place (see insert in Fig. 5). The reduction of the initial

problem for a crack to a singular integral equation hinges on deriving the Green function for a single

dislocation in the uncracked body. The corresponding boundary problem is defined by Eqs. (2), (4), (24)

and (27) and a new bonding condition instead of (3)
Vk
2ðx; 0Þ � Vk

1ðx; 0Þ ¼ FðtÞdðx� tÞdkn; k ¼ 0; . . . ;N � 1; ð28Þ

where
Vk
rðx; yÞ ¼

oukr
ox

;
ovkr
ox

; r0r ; s
0
r

� �
ð29Þ
is the vector including the displacements derivatives in x-direction, vector F ðtÞ ¼ ff1ðtÞ; f2ðtÞ; 0; 0g defines
the jumps in these derivatives across the non-perfect interface with the dislocation at point x ¼ t.
Since the dislocation in fact represents an additional loading and enters only the right hand side of the

bonding conditions, the further steps in the solution are the same as in the previous section. Application
of the finite discrete Fourier transform to the problem for the P -strip with the cyclic stress state leads
to the boundary problem for the representative bi-layered cell defined by Eqs. (14), (16) and by the con-

dition
V�
2ðx; 0;umÞ � V�

1ðx; 0;umÞ ¼ FðtÞdðx� tÞcnm ð30Þ
Energy release rate for the uniformly loaded interface crack located at the first interface below the free edge (upper curve) and at

rd one (lower curve).
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at the interface. The solution of this problem is sought in the form of Laplace integrals (17), and the

expressions for the eight functions Aj in terms of the four unknown jumps are derived from the boundary

conditions (16) and (30)
Aj ¼ fM3j½�D1ðzÞ þ cNm �D2ðzÞ
 þM4j½�D3ðzÞ þ cNm �D4ðzÞ
 þ cnme
�zt½M5jf1ðtÞ þM6jf2ðtÞ
gD�1; j ¼ 1; 2; . . . ; 8:

ð31Þ

Here D is the determinant of matrixM from (18) and Mij are the corresponding cofactors. The jumps are

found from the 4th order system similar to (20) obtained by the use of homogeneous conditions (27) and

(24) at the strip edges. Hence, in view of (17) and (19), the analytical expression of the Green function for

the single interface dislocation is determined. This result is of importance since it allows to formulate

different interface crack problems for a bi-material periodically layered strip in terms of singular integral
equations. In the considered case of a single crack subjected to the loading defined in (25) and (26), the

general procedure developed by Erdogan and Gupta (1971a,b) leads after some manipulation to the fol-

lowing equation
1

pi

Z a

�a

f ðtÞdt
t � x

� bf ðxÞ þ
Z a

�a
½f ðtÞK1ðt; xÞdt þ �f ðtÞK2ðt; xÞ
dt ¼ p; ð32Þ
where f ðtÞ ¼ f1ðtÞ þ if2ðtÞ is a complex dislocation, f ðtÞ denotes the complex conjugate,
p ¼ iðl1 � l2Þð1� b2Þ
2l1l2ða � bÞ r0; ð33Þ
and a; b are the Dundurs elastic mismatch parameters
a ¼ lðj1 þ 1Þ � ðj2 þ 1Þ
lðj1 þ 1Þ þ ðj2 þ 1Þ

; b ¼ lðj1 � 1Þ � ðj2 � 1Þ
lðj1 þ 1Þ þ ðj2 þ 1Þ

: ð34Þ
The kernels of the equation are represented by the inverse Laplace and Fourier transforms
Klðt; xÞ ¼
Z 1

�1
einðx�tÞ 1

P

XP�1
m¼0

c�n
m klðt; xÞdn; l ¼ 1; 2; ð35Þ
where functions klðt; xÞ have lengthy expressions and are not exhibited for the sake of brevity.
The complex equation (32) represents a system of two scalar singular integral equations. Its solution by

the use of Jacobi orthogonal polynomials and the ensuing derivation of the fracture characteristics is

carried out following Erdogan and Gupta (1971b). The numerical results for the specific problems including

the parametric study are presented in the following subsection.

3.2. Numerical results

The singular stress field at the interface ahead of the crack tip is expressed by means of the complex stress

intensity factor K
ryyðx; 0Þ þ isxyðx; 0Þ ¼
Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðx� aÞ
p ðx� aÞie; e ¼ 1

2p
ln
1� b
1þ b

: ð36Þ
Its absolute value together with the elastic parameters defines the energy release rate G (Malishev and
Salganik, 1965)
G ¼ jKj2

16
ð1� b2Þ j1 þ 1

l1

�
þ j2 þ 1

l2

�
: ð37Þ
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The normalized quantity Ĝ, below, is obtained by the use of the energy release in the corresponding
problem of a crack at the interface between two layers of infinite thickness, i.e., dissimilar half planes (Rice

and Sih, 1965)
Ĝ ¼ G
Gb

¼ jKj2

par20ð1þ 4e2Þ
: ð38Þ
The parameters of the multilayered strip in the first example are chosen in order to compare the results

obtained by the proposed method with the ones known from the literature for some limiting cases. An

aluminum/epoxy composite with thick aluminum layers ðh1=h2 ¼ 9Þ is examined. The materials properties
are taken as following: for aluminum (material 1) l1 ¼ 26:5 GPa, m1 ¼ 0:3 and for epoxy (material 2)
l2 ¼ 11:5 GPa, m2 ¼ 0:35. The total number of bi-layers N ¼ H=h is 50.
The dependence of the normalized energy release rate upon the relative crack length is presented in Fig.

5. The upper curve corresponds to the interface separated from the free upper edge by a single epoxy layer.

Hence, the number of the cell with the imperfect interface n is 49. It is seen that increase of the crack length
leads to the monotonic unlimited increase of the energy release. Since the underlying aluminum layer is

significantly thicker and stiffer than the epoxy one, the results, as expected, meet the data obtained by

Erdogan and Gupta (1971b) in the problem on a crack at the interface between the epoxy layer and

the aluminum half plane. On the other hand, for the crack located at the third interface when n ¼ 48 the
observed behavior is vastly different. The energy release rate is found to be almost the same as in the

problem on the crack in the periodically layered plane (Kucherov and Ryvkin, 2002). The influence of

the free boundary emerges only when the crack length exceeds some critical value and the energy release

rate increases rapidly.
In the following examples the cracked strip is loaded by two self-equilibrated point forces applied at the

traction free boundaries (see insert in Fig. 6). In this case the integral equation is formulated by the use of

the Green function for a single dislocation in a strip with free edges. Its derivation is carried out in the same

manner as in the previous case of clamped-free boundary conditions.

In the first configuration the crack is located at the interface closest to the upper edge of the strip

consisting of 50 symmetric bi-layers with h1 ¼ h2. The absolute value of the stress intensity factor is
examined. Its dependence upon the crack length for different material combinations with b ¼ 0 and various
shear moduli ratio l ¼ l2=l1 is depicted in Fig. 6. The general behavior is similar to the one observed
previously in the case of a uniformly loaded crack near the free edge. The rapid increase of the stress

intensity factor with the increase of the crack length indicates beam-like behavior of the upper layer

separated from the strip. In fact, the beam asymptotic (dashed line) derived for the specific case of a
Fig. 6. Absolute value of the stress intensity factor vs. the crack length for different shear moduli ratio.



(a) (b)

Fig. 7. Absolute value of the stress intensity factor vs. elastic mismatch parameter a for the cases b ¼ a=4 (a) and b ¼ 0 (b).
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homogeneous strip by Dyskin et al. (2000) approaches the corresponding curve l ¼ 1 for sufficiently long
cracks. The increase of the upper layer stiffness leads to monotonic decreasing of the stress intensity factor.

Note that when the crack is located deeper inside the strip and the thicknesses of the layers, contrary to the

considered case are not equal, the influence of the elastic mismatch on the stress intensity factor may be

more complicated. This issue is illustrated below.

In the problem presented in Fig. 7a the crack is placed in the midline of the strip. The dependence of the
stress intensity factor upon the elastic mismatch parameter a for the case b ¼ a=4 is exhibited. Conse-
quently, a ¼ 0 corresponds to the case of identical materials, i.e., to the case of a homogeneous strip. The
solid lines are related to the strip with 11 bi-layers and h=a ¼ 0:5. For all the curves the thickness of
the layers of the first type is equal or more than that of the second type. So, the increasing of a from zero for
the curves with h1=h ¼ 0:7,0.9 may be understood as further increasing of the stiffness of the stiff thinner
layers. It is seen that similar to the case of the crack in a periodically layered plane (Ryvkin and Kucherov,

2001) the above increasing may lead to the increase as well as to the decrease of the stress intensity factor.

Therefore, for some material combination, it approaches a maximum value. Only in the particular case of
equal thicknesses of the layers h1=h ¼ 0:5 the increasing of the elastic mismatch always leads to the decrease
of the stress intensity factor. Hence, only in this case the absolute value of the stress intensity factor for the

interface crack is less than the stress intensity factor for the crack in a homogeneous strip. Note that for

the case b ¼ 0 the observed phenomenon does not hold as can be seen in Fig. 7b. Therefore, generalizing
the conclusions regarding interface fracture based on the relatively simple case b ¼ 0 must be done very
carefully. It is of interest to elucidate the influence of the scale parameter h=a on the stress intensity factor.
This may be done by comparing two composites with the same volume fraction defined by the ratio h2=h1
and different thicknesses h of the repetitive cell. To this end the calculations for the strip with the diminished
number of bi-layers (N ¼ 7, h=a ¼ 0:786) have been carried out. The results presented in Fig. 7a by the
dotted line show that for any elastic mismatch the stress intensity factor is weakly affected by the change in

the layering scale h=a.
As it is well known, the mathematical solution of the interface crack problem with the conditions of the

type (25) and (26) on the crack line is characterized by the oscillating singularity (36). On the other hand the

size rc of the physically senseless interpenetration zone which can be derived following Rice (1988) may be
large only in the specific cases with a significant amount of Mode II deformation. In both problem con-

sidered in this section the loading is normal to the crack line. Consequently, the calculations show, as
expected, that the ratio rc=a is negligibly small.
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4. Concluding remarks

The method of analysis of periodically layered composite strips based on the discrete Fourier transform

is implemented and found to be a convenient tool providing accurate results for both cracked and un-
cracked composites. In contrast to the known numerical methods the suggested approach is insensitive to

the number of layers and to the geometric and elastic mismatch between the composite constituents. Rather

cumbersome analytic expressions appearing during the solution procedure are successfully manipulated by

the use of symbolic computation.

Several specific problems have been solved. The analysis of a periodically layered composite strip sub-

jected to three point bending has shown, as expected, that in the vicinity of the point forces the cross-section

of the strip does not remain plane after the deformation and, consequently, the approximate plate theory is

not valid. On the other hand, it appeared that in the case of a large elastic mismatch between the materials
the strain distribution in each individual layer is linear. The investigation of the protective properties of a

periodically layered strip bonded to a substrate indicates that there is an optimal ratio between the layers

thicknesses providing the minimum of the normal (shear) contact stresses resulting from the shear (normal)

external loading.

In the study of cracked composites with an interface delamination crack two types of behavior have been

observed. When the crack is near the strip edge the separated layer acts like a beam and the stress intensity

factor can be found from the beam asymptotics. Alternatively, when the crack is located not too close to the

strip boundary the behavior typical for the crack in a periodically layered plane emerges. It was found that,
similar to the case of a crack in a periodically layered plane, if the thinner layers in the strip are the stiffer

ones, then further increasing of their stiffness may lead to the enlarging as well as to the diminishing of the

absolute value of the stress intensity factor. The essential length scale of each periodic composite is the

thickness of the repetitive cell. The influence of this parameter on the stress intensity factor was examined

and found to be limited.

The composites considered in this paper are bi-material ones with the repetitive cell consisting of two

isotropic elastic layers. The application of the method in the more complicated cases of anisotropic

materials or increased number of layers in the cell seems to be the next logical step in the topic.
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Appendix A
M ¼

lc1 �ls1 �lz1c1 lz1s1 �cmc2 �cms2 �cmz2c2 �cmz2s2
ls1 lc1 �ld1 le1 cms2 �cmc2 cmd2 cme2
�l̂c1 l̂s1 l̂z1c1 þ g1

2
s1

g1
2
c1 � l̂z1s1 0 0 cmg2

2
s2 � cmg2

2
c2

l̂s1 l̂c1 �l̂z1s1 � g3c1 g3s1 � l̂z1c1 0 0 cmg1
2

c2
cmg1
2

s2
�l 0 0 0 1 0 0 0

0 �l lk1 0 0 1 �k2 0

�2 0 0 �g1 2 0 0 g2
0 2 �f1 0 0 �2 f2 0

2
66666666666664

3
77777777777775

;
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where
zi ¼ hiz; ci ¼ cos zi; si ¼ sin zi;

gi ¼ ji þ 1; fi ¼ ji � 1; g3 ¼ lj1 � f1=2; l̂ ¼ l � 1;

di ¼ jici þ zisi; ei ¼ jisi � zici; i ¼ 1; 2:
Appendix B

The elements of the matrix in (20) are presented on the imaginary axis z ¼ it
sij ¼
aij

detðMÞ ;
where
detðMÞ ¼ g4ðc4m þ 1Þ þ 4g4ðl̂ðk0 � 2h1h2l̂t2ÞC3 � k12C4Þg1cm
� ð4k12k0ðC2 þ C1Þl̂ � 2k212C6 � 2l̂2k

2
0C5 � 4ðk0l̂ þ ðj2j1 þ 1ÞlÞðl2j1 þ j2Þ

� 4l2ððj22 þ g2Þðj21 þ g1Þ þ 3j2j1Þ � 4t2ð4h212t2 þ k7 � 2ðh21C2k
2
1 þ h22C1k

2
2Þl̂2ÞÞc2m;
and
a11 ¼ g4cmð2tl̂ððh1j2 � h2Þc2m þ lðh1 � j1h2ÞÞS3 þ 2tðk1h1 þ k2h2Þðc2m � lÞS4 � ðn2g1 þ 2k12ÞC4
� ð4h1h2l̂ðl̂ � g1Þt2 þ n3g1 � 2k0l̂ÞC3Þ þ ð2tl̂g4ðk2h2S1 þ h1k1S2Þ � 4l̂ðh22k2k8C1 þ k1n1h21C2Þt2

þ ðC2 þ C1Þðk1ðk22 þ l̂g2Þ þ ð�l̂j2k0 þ n1k1Þk2Þ þ k12n2C6 � k0l̂n3C5 � 16h21h22l̂3t4

þ 4l̂ðk1n1h21 � g4h1h2ð3� lÞ þ k2k8h22Þt2 þ 2g24 � g4k0 � l̂ðj2k2 � k0Þðk1 � k0ÞÞc2m þ g24;

a13 ¼ ig4cmðð4h1h2l̂ðc2m þ lÞt2 þ lg1ðj2 � j1ÞÞS3 � lg1ðj2j1 � 1ÞS4 � 2tðk1h1 þ k2h2Þðc2m þ lÞC4
� 2tl̂ððh2 þ h1j2Þc2m � lðj1h2 þ h1ÞÞC3Þ þ ilc2mðg1ðð4t2h22 � j2Þk2l̂ þ k1k0ÞS1
� g2ðð4t2k1h21 � j1Þk1l̂ þ k0k2ÞS2 þ k0l̂ðj2 � j1ÞS5 þ k12ðj2j1 � 1ÞS6 þ 2tðl̂h1f2k1g1C2
� l̂g2k2f1h2C1 þ 4h12ðg1h2 þ h1g2Þt2 þ g5ÞÞ;

a21 ¼ �a13 þ 4Itcmð�g4ðk1h1 þ k2h2Þðc2m þ lÞC4 � g4l̂ððj2c2m � lÞh1 þ ðc2m � lj1Þh2ÞC3
þ cmlðl̂h1f2k1g1C2 � l̂g2k2f1h2C1 þ 4h12ðg1h2 þ h1g2Þt2 þ g5ÞÞ;

a23 ¼ a11� 4tcmg4ðl̂ððlþ j2c
2
mÞh1� ðlj1þ c2mÞh2ÞS3þ ðc2m � lÞðk1h1 þ k2h2ÞS4þ l̂cmðk2h2S1þ h1k1S2ÞÞ
with
g1 ¼ 1þ c2m; h12 ¼ h1h2l̂2; g4 ¼ lg1g2;

k0 ¼ lj1 � j2; k1 ¼ l þ j2; k2 ¼ lj1 þ 1;

k7 ¼ 2l̂2ðk21h21 þ 2g4h2h1 þ k22h
2
2Þ; k8 ¼ l̂ � k2; k12 ¼ k1k2;

n1 ¼ l̂j2 � k1; n2 ¼ j2k2 þ k1; n3 ¼ k0 þ l̂j2; C1 ¼ cosh 2th1;
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C2 ¼ cosh 2th2; C3 ¼ cosh tðh1 � h2Þ; C4 ¼ cosh th; C5 ¼ cosh 2tðh1 � h2Þ;

C6 ¼ cosh 2th; S1 ¼ sinh 2th1; S2 ¼ sinh 2th2; S3 ¼ sinh tðh1 � h2Þ;

S4 ¼ sinh th; S5 ¼ sinh 2tðh1 � h2Þ; S6 ¼ sinh 2th;

g5 ¼ g1ðlg22 þ k21 � l̂2j2Þh1 þ g2ðlg21 þ k22 � l̂2j1Þh2:
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